Fixed Parameter Tractable Algorithms in Combinatorial Topology
نویسندگان
چکیده
To enumerate 3-manifold triangulations with a given property, one typically begins with a set of potential face pairing graphs (also known as dual 1-skeletons), and then attempts to flesh each graph out into full triangulations using an exponential-time enumeration. However, asymptotically most graphs do not result in any 3-manifold triangulation, which leads to significant “wasted time” in topological enumeration algorithms. Here we give a new algorithm to determine whether a given face pairing graph supports any 3-manifold triangulation, and show this to be fixed parameter tractable in the treewidth of the graph. We extend this result to a “meta-theorem” by defining a broad class of properties of triangulations, each with a corresponding fixed parameter tractable existence algorithm. We explicitly implement this algorithm in the most generic setting, and we identify heuristics that in practice are seen to mitigate the large constants that so often occur in parameterised complexity, highlighting the practicality of our techniques.
منابع مشابه
Efficient Algorithms to Decide Tightness
Tightness is a generalisation of the notion of convexity: a space is tight if and only if it is “as convex as possible”, given its topological constraints. For a simplicial complex, deciding tightness has a straightforward exponential time algorithm, but more efficient methods to decide tightness are only known in the trivial setting of triangulated surfaces. In this article, we present a new p...
متن کاملGraph operations characterizing rank-width
Graph complexity measures like tree-width, clique-width and rank-width are important because they yield Fixed Parameter Tractable algorithms. These algorithms are based on hierarchical decompositions of the considered graphs and on boundedness conditions on the graph operations that, more or less explicitly, recombine the components of decompositions into larger graphs. Rank-width is de ned in ...
متن کاملFirst-Order Queries on Finite Abelian Groups
We study the computational problem of checking whether a logical sentence is true in a finite abelian group. We prove that model checking first-order sentences on finite abelian groups is fixed-parameter tractable, when parameterized by the size of the sentence. We also prove that model checking monadic second-order sentences on finite abelian groups finitely presented by integer matrices is no...
متن کاملOn Computing the Maximum Parsimony Score of a Phylogenetic Network
Phylogenetic networks are used to display the relationship of different species whose evolution is not treelike, which is the case, for instance, in the presence of hybridization events or horizontal gene transfers. Tree inference methods such as Maximum Parsimony need to be modified in order to be applicable to networks. In this paper, we discuss two different definitions of Maximum Parsimony ...
متن کاملImportant Separators and Parameterized Algorithms
The notion of “important separators” and bounding the number of such separators turned out to be a very useful technique in the design of fixed-parameter tractable algorithms for multi(way) cut problems. For example, the recent breakthrough result of Chen et al. [3] on the Directed Feedback Vertex Set problem can be also explained using this notion. In my talk, I will overview combinatorial and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014